
DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis
Functions

Supplementary Material

1. DARB-Splatting
We generalize the reconstruction kernel to include non-
exponential functions by introducing a broader class of Decaying
Anisotropic Radial Basis Functions (DARBFs). One of the main
reasons why non-exponential functions have not been widely ex-
plored is the advantageous integration property of the Gaussian
function, which simplies the computation of the 2D covariance of
a splat. However, through Monte Carlo experiments, we demon-
strate that DARBFs can also exhibit this desirable property, even
though most of them lack a closed-form solution for integration.
Additionally, the integration of DARBFs does not generally relate
to other DARBFs.

We also explained (Sec. ??), using an example, that in 3DGS
[5], the opacity contribution for each pixel from a reconstruction
kernel (3D) is derived from its splats (2D), rather than from their
3D volume. Based on this, we consider the covariance in 3D as a
variable representing the 2D covariances in all directions. In the
next section, we describe the Monte Carlo experiments we con-
ducted, supported by mathematical equations.

In surface reconstruction tasks [2], DARBFs leverage princi-
pal component analysis (PCA) of the local covariance matrix to
identify directionally dependent features and orient the 3D ellip-
soids accordingly. This approach enables DARBFs to model local
anisotropies in the data and reconstruct surfaces, preserving ne
details more effectively than isotropic models. Furthermore, the
decaying nature of these functions, as presented in Table ??, re-
sults in a more localized inuence, effectively focusing the func-
tion within a certain radius. This localization is advantageous in
3D reconstruction, where only neighboring points contribute sig-
nicantly to a given point in space, ensuring smooth blending.
Therefore, we can conclude that all DARBFs are suitable for splat-
ting. Although there are many DARBFs, we focus on a selected
few here due to limited space. In the following sections, we elab-
orate on the mathematical formulation of these selected DARBFs,
outline their computational implementation, and demonstrate their
utility in accurately modeling complex opacity distributions in the
context of 3D scene reconstruction.

1.1. Mathematical Expressions of Monte Carlo Ex-
periments

When it comes to 3DGS [5], we initially start with a 3× 3 covari-
ance matrix in the 3D world coordinate system. By using,

Σ′ = JWΣW TJT (1)

we obtain a 3 × 3 covariance matrix (Σ′) in the camera coordi-
nate space. According to the integration property mentioned in
the EWA Spatting paper [8], this Σ′ can be projected into a 2 × 2
covariance matrix in the image space (Σ′

2×2) by simply removing
the third row and column of Σ′. However, the same process does
not apply to other DARBFs. For instance, there is no closed-form

solution for the marginal integration of the half-cosine and raised-
cosine functions used in this paper. To simplify the understanding
of this integration process and address this issue, we conducted the
following experiment.

Experimental Setup. First, we introduce our 3D point space
with x, y, z coordinates in equally spaced intervals for N number
of points, a random mean vector (µ) and a random 3 × 3 covari-
ance matrix (Σ). Based on a predetermined limit specic for each
DARBF (we will discuss about this in Sec. 1.2), we calculate the
density/power assigned by the DARB kernel at a particular point
x in 3D space as follows:

P = cos

2π (x− µ)T (Σ)−1 (x− µ)

36

, (2)

where x =

xi yi zi

. As for the integration, we take the sum

of these P (P ∈ RN×N×N) matrices along one dimension (for
instance, along z axis) and name it total density, which can be
obtained as follows:

total density (x, y) =

z

P (x, y, z) (3)

where total density ∈ RN×N . This will, for example, inte-
grate the cosine kernel in Eq. 2 along z-direction, collapsing into
a 2D density in XY plane. Following this integration, these total
densities will be normalized as follows:

total densitynormalized =
total density

max(total density)
(4)

This normalization step does not change the typical covariance re-
lationship. To compare with other functions’ projection better, we
use this normalization, so that the maximum of total density will
be equal one.

For the visualization of these 2D densities, we create a 2D
mesh grid by using only x, y coordinate matrices called coords ∈
RN2×2. At the same time, we atten the 2D density matrix and
get a density grid as density ∈ RN2×1.

If the dimensions of x, y coordinates are different, we need to
repeat the coords and density arrays separately to perfectly align
each 2D coordinate for its corresponding density value. Since we
use the same dimension for x, y coordinates, we can skip this step.
By using these coords and density matrices, we then calculate
the weighted covariance matrix as follows:

x̄ =
N′

i=1 wixiN′
i=1 wi

ȳ =
N′

i=1 wiyiN′
i=1 wi

where N ′ = N2 and wi denote the corresponding parameters
from the density matrix. Finally, the vector m̄ is given by:

m̄ =

x̄
ȳ

2×1

(5)

By using the above results, we can determine the projected 2 × 2
covariance matrix (Σ′

2×2) as follows:

Σ′
2×2 =

σxx σxy

σxy σyy

where σxx, σyy and σxy terms can be determined as:

σxx =

N
i=1 wi(xi − x̄)2
N

i=1 wi

σyy =

N
i=1 wi(yi − ȳ)2
N

i=1 wi

σxy =

N
i=1 wi(xi − x̄)(yi − ȳ)

N
i=1 wi

We can express this entire operation in matrix form as follows:

Σ′
2×2 =

1
N ′

i=1 wi

N ′

i=1

wi (xi − m̄) (xi − m̄)T (6)

where xi =

xi

yi

Based on this simulation, we received the projected 2 × 2 covari-
ance matrix (Σ′

2×2) for different DARBFs and identied that they
are not integrable for volume rendering [8]. Simply saying, we
cannot directly obtain the rst two rows and columns of Σ′

2×2

from the rst two rows and rst tow columns of the 3D covariance
matrix Σ′

3×3 as they are. But we noticed that there is a common
ratio between the values of these two matrices. To resolve this is-
sue, we introduce a correction factor ψ as a scalar to multiply with
the Σ′

2×2 matrix. This scalar holds different values for different
DARBFs since their density kernels act differently.

1.2. Determining the Boundaries of DARBFs
From the 1D signal reconstruction simulations (Sec. ?? and Sec.
4) and the splatting results (Sec. 4), we demonstrate that strictly
decaying functions can represent the scenes better. Therefore, we
use the limits for each function to ensure the strictly decaying na-
ture, while also considering the size of each splat. By restricting
to a single pulse, we achieve a more localized representation, re-
sulting in better quality. Incorporating more pulses allows them to
cover a larger region compared to one pulse (with the same ξ and
β), leading to memory reduction, albeit with a tradeoff in quality.

In 3DGS [5], opacity modeling happens after the projection
of the 3D covariance (Σ) in world coordinate space onto 2D co-
variance (Σ′

2×2) in image space. By using the inverse covariance
(Σ′−1

2×2) and the difference between the center of the splat (µ′) and
the coordinates of the selected pixel, they introduce the Mahalno-
bis component (Eq. ??) within the Gaussian kernel to model the
opacity distribution across each splat. When determining the -
nal color of a particular pixel, they have incorporated a bounding
box mechanism to identify the area which a splat can have the ef-
fect when modeling the opacity, so that they can do the tile-based
rasterization using the computational resources efciently.

Since the Gaussian only has a main lobe, we can simply model
the opacity distribution across a splat using the bounding box men-
tioned in Sec. ??. This bounding box, determined by the radius
R = 3 ·

maxλ1,λ2, where λ1 and λ2 denote the eigenvalues

of the 2D covariance matrixΣ′
2×2 (Sec. ??), will cover most of the

function (main lobe), affecting the opacity modeling signicantly.

However, in our DARBFs, we have multiple side lobes which can
have an undesirable effect on this bounding box unless the range
is specied correctly. If these side lobes are included within the
bounding box, each splat will have a ring effect in their opacity
distributions.

To avoid this ring effect, we identied the range of the hori-
zontal spread of the main lobe of each DARBF in terms of their
Mahalanobis distance component and introduced a limit in opacity
distribution to carefully remove the effects from their side lobes.
In our Monte Carlo experiments (Sec. 1.1), we used this limit in
the 3D DARB kernel, as we directly perform the density calcula-
tion in 3D and the projection onto 2D image space afterwards. For
example, let us consider the 3D raised cosine as follows:

w = 0.5 + 0.5 cos

2πd2M

5

(7)

where ξ = 5
2π

and β = 2 according to the standard expression
mentioned in Table ??. To avoid the side lobes and only use the
main lobe, we assess the necessary range that we should consider
with the Gaussian curves in 1D and chose the following limit (ac-
cording to Table ??):

d2M < 6.25 =

π × 5

2π

2

(8)

If the above limit is not satised by the Mahalanobis compo-
nent, the density value will be taken as zero for those cases. As
in the Table ??, this limit will be different for different DARBFs
since each DARBF shows different characteristics regarding their
spread, main lobe and side lobes. Applying these limits will help
to consider the 100% support of the main lobe of each DARBF
into the bounding box.

Even though we apply these limits on the 3D representation
of each kernel and calculate the densities, in our reconstruction
pipeline, we use these limits on DARB splats (2D) similar to
3DGS [5]. In our experiments, our main target was to identify
the relationship between the 2D covariance Σ′

2×2 and the 3D sub-
matrix Σ′

3×3 (Sec. 1.1), and implement these limits on 3D DARB
kernels.

2. DARB-Splatting Implementation
Here, we present the reconstruction kernel (3D) and splat (2D)
functions (footprint functions) for selected DARBFs, along with
their respective derivative term modications related to back-
propagation, in both mathematical expressions and CUDA codes.
These modications have been incorporated into the splatting
pipeline and CUDA code changes. In the code, d denotes x − µ′

, and con =

a b
b c

denotes the inverse of the 2D covariance

matrix (Σ′
2×2)

−1 in the mathematical form. For each DARBF,
we clearly show ξ and dM in the code. We use a unique correc-
tion factor ψ for each DARBF, determined through Monte Carlo
experiments, to compute Σ′

2×2 from Σ′.

2.1. Raised Cosine Splatting
Here, a single pulse of the raised cosine signal is selected for en-
hanced performance. The 3D raised cosine function is as follows:

0.5 + 0.5 cos

1

ξ
(dM)

,

1

ξ
(dM) ≤ π (9)

The raised cosine splat function is as follows:

w = 0.5 + 0.5 cos

(x− µ′)T Σ′−1

2×2 (x− µ′)

ξ

 , (10)

(x− µ′)T Σ′−1

2×2 (x− µ′)

ξ
≤ π

Modications in derivative terms related to the raised cosine
splat during backpropagation are provided next.

∂w

∂(x − µ′)
= −

0.5

ξ
sin

x − µ′T Σ′−1

2×2

x − µ′

ξ

·

Σ′−1
2×2

(x − µ′)

x − µ′T Σ′−1
2×2

x − µ′

.

(11)

∂w

∂Σ′−1
2×2

= −
0.5

ξ
sin

x − µ′T Σ′−1

2×2

x − µ′

ξ

·

x − µ′

x − µ′T

x − µ′T Σ′−1
2×2

x − µ′

.

(12)

The following CUDA code modications were implemented to
support raised cosine splatting.

1 float correctionFactor = 0.655f; // The correction
factor we introduce

2 cov *= correctionFactor ; // Multiply the 3D covariance
matrix by the correction factor

3

4 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.
y + 2.f * con_o.y * d.x * d.y; // dM**2

5 if (ellipse < 0 || ellipse > 6.25f) // Limit set on 2D
ellipse to restrict to one pulse

6 continue;
7 float ellipse_root = sqrt(ellipse); // dM
8 float ellipseFactor = M_PI * ellipse_root / 2.5f; //

Here scaling factor, xi = 5/(2 * math_pi)
9 const float Cosine = 0.5f + .5f * cos(ellipseFactor);

10 const float alpha = min(0.99f, con_o.w * Cosine); // w *
raised cosine

Listing 1. Modications in forward propagation in CUDA
rasterizer for raised cosine splatting.

1 float correctionFactor = 0.655f;
2 cov2D *= correctionFactor;
3

4 // Gradients of loss w.r.t. entries of 2D covariance
matrix,

5 // given gradients of loss w.r.t. conic matrix (inverse
covariance matrix).

6 // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
7 dL_da = correctionFactor * denom2inv * (-c * c *

dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a

* c) * dL_dconic.z);
8 dL_dc = correctionFactor *denom2inv * (-a * a *

dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a

* c) * dL_dconic.x);
9 dL_db = correctionFactor *denom2inv * 2 * (b * c *

dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a

* b * dL_dconic.z);
10

11 float ellipse = (con_o.x * d.x * d.x + con_o.z * d.y * d
.y + 2.f * con_o.y * d.x * d.y);

12 if (ellipse < 0 || ellipse > 6.25f) // limit set on 2D
ellipse to restrict to one pulse

13 continue;
14 float ellipse_root = sqrt(ellipse); // dM
15 float ellipseFactor = M_PI *ellipse_root / 2.5f;

16 const float Cosine = .5f + .5f* cos(ellipseFactor); //
raised cosine

17 const float alpha = min(0.99f, con_o.w * Cosine); // w *
raised cosine

18

19 // Helpful reusable temporary variables
20 const float dL_dCosine = con_o.w * dL_dalpha;
21 const float sindL_dCosine = sin(ellipseFactor)*

dL_dCosine;
22 const float factor1 = - M_PI * sindL_dCosine /5.f /

ellipse_root;
23 const float factor2 = factor1 * 0.5 ;
24 const float dL_ddelx = (con_o.x * d.x + con_o.y * d.y)*

factor1;
25 const float dL_ddely = (con_o.z * d.y + con_o.y * d.x)*

factor1;
26

27 atomicAdd(&dL_dmean2D[global_id].x, dL_ddelx * ddelx_dx)
;

28 atomicAdd(&dL_dmean2D[global_id].y, dL_ddely * ddely_dy)
;

29 // Update gradients w.r.t. 2D covariance (2x2 matrix,
symmetric)

30 atomicAdd(&dL_dconic2D[global_id].x, d.x * d.x * factor2
);

31 atomicAdd(&dL_dconic2D[global_id].y, d.x * d.y * factor2
);

32 atomicAdd(&dL_dconic2D[global_id].w, d.y * d.y * factor2
);

33 // Update gradients w.r.t. opacity of the Cosine
34 atomicAdd(&(dL_dopacity[global_id]), Cosine * dL_dalpha)

;

Listing 2. Modications in backward propagation in CUDA
rasterizer for raised cosine splatting.

2.2. Half-cosine Squared Splatting
The 3D half-cosine square function we selected is as follows:

cos

1

ξ
(dM)2

,

1

ξ
(dM)2 ≤ π

2

The corresponding half-cosine squared splat function is as fol-
lows:

w = cos

(x− µ′)T (Σ′

2×2)
−1 (x− µ′)

ξ

, (13)

(x− µ′)T Σ′−1

2×2 (x− µ′)

ξ
≤ π

2

Adjustments to the derivative terms associated with the half-
cosine squared splat during backpropagation are given below.

dw

d(x− µ′)
=

−2 (Σ′
2×2)

−1 (x− µ′) sin

(x−µ′)T (Σ′

2×2)
−1(x−µ′)

ξ

ξ
(14)

dw

d((Σ′
2×2)

−1)
=

−(x− µ′) (x− µ′)T sin

(x−µ′)T (Σ′

2×2)
−1(x−µ′)

ξ

ξ
(15)

The following CUDA code changes were made to support half-
cosine squared splatting.

1 float correctionFactor = 1.36f; // The correction
factor we introduce

2 cov *= correctionFactor ; // Multiply the 3D covariance
matrix by the correction factor

3

4 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.
y + 2.f * con_o.y * d.x * d.y; // dm_squared

5 if (ellipse < 0.f || ellipse > 9.f) // limit set on 2D
ellipse to restrict half cosine pulse

6 continue;
7 float ellipseFactor = 0.175f *ellipse; // 2 * M_PI *

ellipse / 36;
8 const float Cosine = cos(ellipseFactor);
9 const float alpha = min(0.99f, con_o.w * Cosine); // w *

cosine

Listing 3. Modications in forward propagation in CUDA
rasterizer for half-cosine squared splatting.

1 float correctionFactor = 1.36f;
2 cov2D *= correctionFactor;
3

4 // Gradients of loss w.r.t. entries of 2D covariance
matrix,

5 // given gradients of loss w.r.t. conic matrix (inverse
covariance matrix).

6 // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
7 dL_da = correctionFactor * denom2inv * (-c * c *

dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a

* c) * dL_dconic.z);
8 dL_dc = correctionFactor *denom2inv * (-a * a *

dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a

* c) * dL_dconic.x);
9 dL_db = correctionFactor *denom2inv * 2 * (b * c *

dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a

* b * dL_dconic.z);
10

11 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.
y + 2.f * con_o.y * d.x * d.y;

12 if (ellipse < 0 || ellipse > 9.f) // limit set on 2D
ellipse

13 continue;
14 float ellipseFactor = 0.174f *ellipse ; // 2* M_PI *

ellipse / 36.f;
15 const float Cosine = cos(ellipseFactor); // half cosine

square
16 const float alpha = min(0.99f, con_o.w * Cosine);
17

18 // Helpful reusable temporary variables
19 const float dL_dCosine = con_o.w * dL_dalpha;
20 const float sindL_dCosine = -0.349* sin(ellipseFactor) *

dL_dCosine;
21 const float halfsindL_dCosine = 0.5f * sindL_dCosine;
22 const float dCosine_ddelx = (con_o.x * d.x + con_o.y *

d.y)* sindL_dCosine ;
23 const float dCosine_ddely = (con_o.z * d.y + con_o.y *

d.x)* sindL_dCosine;
24

25 // Update gradients w.r.t. 2D mean position of the half
cosine squared

26 atomicAdd(&dL_dmean2D[global_id].x, dCosine_ddelx *
ddelx_dx);

27 atomicAdd(&dL_dmean2D[global_id].y, dCosine_ddely *
ddely_dy);

28 // Update gradients w.r.t. 2D covariance (2x2 matrix,
symmetric)

29 atomicAdd(&dL_dconic2D[global_id].x, d.x * d.x *
halfsindL_dCosine);

30 atomicAdd(&dL_dconic2D[global_id].y, d.x * d.y *
halfsindL_dCosine);

31 atomicAdd(&dL_dconic2D[global_id].w, d.y * d.y *
halfsindL_dCosine);

32 // Update gradients w.r.t. opacity of the half cosine
squared

33 atomicAdd(&(dL_dopacity[global_id]), Cosine * dL_dalpha)
;

Listing 4. Modications in backward propagation in CUDA
rasterizer for half-cosine squared splatting.

2.3. Sinc Splatting
Here, the sinc function refers to a single pulse of the modulus sinc
function. This conguration was selected due to improved perfor-
mance. The corresponding 3D sinc function is provided below:

sin

1
ξ
(dM)

1
ξ
(dM)

,

1

ξ
(dM) ≤ π

The related sinc splat function is as follows:

w =

sin

(x−µ′)T (Σ′

2×2)
−1(x−µ′)

ξ

(x−µ′)T (Σ′

2×2)
−1(x−µ′)

ξ

, (16)

(x− µ′)T Σ′−1

2×2 (x− µ′)

ξ
≤ π

The modications to the derivative terms related to the sinc
splat in backpropagation are outlined below.

∂w

∂(x− µ′)
= sgn

sin(A)

A

·A cos(A)− sin(A)

A2
·
2(Σ′

2×2)
−1(x− µ′)

ξ
,

(17)

∂w

∂(Σ′
2×2)

−1
= sgn

sin(A)

A

·A cos(A)− sin(A)

A2
· (x− µ′)(x− µ′)T

ξ
,

(18)

where A =
(x−µ′)T (Σ′

2×2)
−1(x−µ′)

ξ
.

The following CUDA code changes were made to support the
sinc splatting described here.

1 float correctionFactor = 1.18f; // The correction
factor we introduce

2 cov *= correctionFactor ; // Multiply the 3D covariance
matrix by the correction factor

3

4 float constA = 3.0f/ M_PI;
5 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.

y + 2.f * con_o.y * d.x * d.y; // dM**2
6 if (ellipse <= 0 || ellipse > 9.f) // limit set on 2D

ellipse to restrict to one pulse
7 continue;
8 float ellipse_root = sqrt(ellipse); // dM
9 float ellipse_rootdivA = ellipse_root / constA;

10 float alpha = min(0.99f, con_o.w * fabs(sin(
ellipse_rootdivA) / ellipse_rootdivA)); // w *
modulus sinc

Listing 5. Modications in forward propagation in CUDA
rasterizer for sinc splatting.

1 float correctionFactor = 1.18f;
2 cov2D *= correctionFactor;
3

4 // Gradients of loss w.r.t. entries of 2D covariance
matrix,

5 // given gradients of loss w.r.t. conic matrix (inverse
covariance matrix).

6 // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a

7 dL_da = correctionFactor * denom2inv * (-c * c *
dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a

* c) * dL_dconic.z);
8 dL_dc = correctionFactor *denom2inv * (-a * a *

dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a

* c) * dL_dconic.x);
9 dL_db = correctionFactor *denom2inv * 2 * (b * c *

dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a

* b * dL_dconic.z);
10

11 float constA =3.0f/ M_PI;
12 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.

y + 2.f * con_o.y * d.x * d.y;
13 if (ellipse <= 0 || ellipse > 9.f) // limit set on 2D

ellipse to restrict to one pulse
14 continue;
15 float ellipse_root = sqrt(ellipse); // dM
16 float ellipse_rootdivA = ellipse_root / constA;
17 const float sinellipse_rootdivA = sin(ellipse_rootdivA);
18 const float G = fabs(sinellipse_rootdivA /

ellipse_rootdivA); // modulus sinc
19 const float alpha = min(0.99f, con_o.w * G); // w *

modulus sinc
20

21 // Helpful reusable temporary variables
22 const float dL_dG = con_o.w * dL_dalpha;
23 // Original equation:
24 // cospart = cos(ellipse_rootdivA) * sin(

ellipse_rootdivA) * fabs(1 / ellipse_root) /
ellipse_root / fabs(sin(ellipse_rootdivA))

25 // Simplified equation using copysignf for clarity:
26 const float cospart = cos(ellipse_rootdivA) * copysignf

(1.0f, sinellipse_rootdivA) / ellipse ;
27 const float sinpart = constA *fabs(sinellipse_rootdivA)

/ ellipse / ellipse_root ;
28 const float commonpart = (cospart - sinpart)* dL_dG;
29 const float commonpartdiv2 = commonpart * 0.5f;
30 const float dG_ddelx = commonpart * (d.x * con_o.x + d.y

* con_o.y);
31 const float dG_ddely = commonpart * (d.x * con_o.y + d.y

* con_o.z);
32 // Update gradients w.r.t. 2D mean position of the

modulus sinc
33 atomicAdd(&dL_dmean2D[global_id].x, dG_ddelx * ddelx_dx)

;
34 atomicAdd(&dL_dmean2D[global_id].y, dG_ddely * ddely_dy

);
35 // Update gradients w.r.t. 2D covariance (2x2 matrix,

symmetric)
36 atomicAdd(&dL_dconic2D[global_id].x, commonpartdiv2 * d.

x * d.x);
37 atomicAdd(&dL_dconic2D[global_id].y, commonpartdiv2 * d.

x * d.y);
38 atomicAdd(&dL_dconic2D[global_id].w, commonpartdiv2 * d.

y * d.y);
39 // Update gradients w.r.t. opacity of the modulus sinc
40 atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);

Listing 6. Modications in backward propagation in CUDA
rasterizer for sinc splatting.

2.4. Inverse Quadratic Splatting
Here, we dene the inverse quadratic formulation based on the
following 3D inverse quadratic function:

1
1
ξ
(dM)2 + 1

 , dM ≥ 0

The corresponding inverse quadratic splat function is as fol-
lows:

w =
1

1
ξ
(x− µ′)T (Σ′

2×2)
−1 (x− µ′) + 1

 (19)

The changes done to the derivative terms related to the inverse
quadratic splat during backpropagation are detailed below.

∂w

∂z
= − 2

ξ

1
ξ
zT (Σ2×2)−1z + 1

2
(Σ2×2)

−1z. (20)

∂w

∂(Σ2×2)−1
= − 1

1
ξ
zT (Σ2×2)−1z + 1

2
· 1
ξ
zzT . (21)

where z = (x− µ′).
The CUDA code modications provided below were imple-

mented to enable the inverse quadratic splatting described in this
section.

1 float correctionFactor = 1.38f; // The correction
factor we introduce

2 cov *= correctionFactor ; // Multiply the 3D covariance
matrix by the correction factor

3

4 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.
y + 2.f * con_o.y * d.x * d.y ; // dm**2

5 if (ellipse <= 0)
6 continue;
7 if (ellipse >= 9.f) // limit set on 2D ellipse
8 continue;
9 float alpha = min(0.99f, con_o.w * (1.f / (ellipse + 1.f

))); // w * inverse quadric

Listing 7. Modications in forward propagation in CUDA
rasterizer for inverse quadratic splatting.

1 float correctionFactor = 1.38f;
2 cov2D *= correctionFactor;
3

4 // Gradients of loss w.r.t. entries of 2D covariance
matrix,

5 // given gradients of loss w.r.t. conic matrix (inverse
covariance matrix).

6 // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
7 dL_da = correctionFactor * denom2inv * (-c * c *

dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a

* c) * dL_dconic.z);
8 dL_dc = correctionFactor *denom2inv * (-a * a *

dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a

* c) * dL_dconic.x);
9 dL_db = correctionFactor *denom2inv * 2 * (b * c *

dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a

* b * dL_dconic.z);
10

11 float ellipse = con_o.x * d.x * d.x + con_o.z * d.y * d.
y + 2.f * con_o.y * d.x * d.y ;

12 if (ellipse <= 0)
13 continue;
14 if (ellipse >= 9.f) // limit set on 2D ellipse
15 continue;
16 const float G = (1.f / (ellipse + 1.f)); // inverse

quadric
17 const float alpha = min(0.99f, con_o.w * G);
18

19 // Helpful reusable temporary variables
20 const float dL_dG = con_o.w * dL_dalpha;
21 const float ellipsepow = - dL_dG * 2.f / pow(ellipse +

1.f, 2.f);
22 const float halfellipsepow = 0.5f * ellipsepow;
23 const float dG_ddelx = ellipsepow * (d.x * con_o.x + d.y

* con_o.y);
24 const float dG_ddely = ellipsepow * (d.x * con_o.y + d.y

* con_o.z);
25 // Update gradients w.r.t. 2D mean position of the IQF
26 atomicAdd(&dL_dmean2D[global_id].x, dG_ddelx * ddelx_dx

);
27 atomicAdd(&dL_dmean2D[global_id].y, dG_ddely * ddely_dy

);
28 // Update gradients w.r.t. 2D covariance (2x2 matrix,

symmetric)

29 atomicAdd(&dL_dconic2D[global_id].x, halfellipsepow * d.
x * d.x);

30 atomicAdd(&dL_dconic2D[global_id].y, halfellipsepow * d.
x * d.y);

31 atomicAdd(&dL_dconic2D[global_id].w, halfellipsepow * d.
y * d.y);

32 // Update gradients w.r.t. opacity of the IQF
33 atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);

Listing 8. Modications in backward propagation in CUDA
rasterizer for inverse quadratic splatting.

3. Utility Applications of DARB-Splatting
3.1. Enhanced Quality
In terms of splatting, despite Gaussians providing SOTA quality,
we demonstrate that the raised cosine function can deliver mod-
estly improved visual quality compared to Gaussians. Our 1D sim-
ulations, presented in Sec. ?? and Sec. 4, and the qualitative visual
comparisons demonstrated in Fig. 1, illustrate this effectively.

Across the selected DARBFs, only the raised cosine outper-
forms the Gaussian in terms of quality, albeit by a small margin.
The others fail to surpass the Gaussian in terms of quality. The pri-
mary reason is that exponentially decaying functions ensure faster
blending compared to relatively atter functions. However, these
functions have other utilities, which we will discuss next.

3.2. Reduced Training Time

−4 −2 2 4−0.5

0.5

1

x

Functions in 1D
Gaussian

Half-cosine square

Figure 2. Comparison of Gaussian and cos

2πx2

36

functions

within the range x ≤ 3 (same variance for both).

According to Fig. 2, which shows the half-cosine square with
β = 2 and ξ = 36, along with the Gaussian 1D plot, we can ob-
serve that for a single primitive with the same variance, the cosine
function can provide higher opacity values. Instead of requiring
multiple splats to composite to determine the nal pixel color, the
cosine function can achieve the same accumulated value required
with fewer primitives. Although the cosine function’s computation
is more time-intensive compared to the Gaussian calculations, the
overall training time is reduced due to the lower number of primi-
tives required.

This is further illustrated in Figures 3 and 4, which provide
a detailed analysis of the training loss and speed curves across
various dataset scenes. Overall, despite having similar training
loss curves with 3DGS, half-cosine splatting demonstrates supe-
rior performance compared to Gaussians.

3.3. Reduced Memory Usage
As previously mentioned, half cosine squared splatting specically
requires fewer primitives compared to Gaussians. This results in
lower memory usage, as they provide higher opacity values across

most of the regions they cover. In contrast, Gaussians require more
primitives to achieve a similar accumulated opacity coverage. By
using fewer half cosine squared primitives, we can achieve the
desired color representation in the image space more efciently.
Similarly, sinc splatting and inverse quadratic splatting also con-
sume lesser memory compared to Gaussians. The results in Table
1 and Table 2 further showcase this.

4. Extended Results and Simulations
Extended results. As mentioned in our paper, we trained
our models on a single NVIDIA GeForce RTX 4090 GPU and
recorded the training time. Since the benchmark models from
other papers [3, 5] were trained on different GPUs, we applied
a scaling factor to ensure a fair comparison of training times with
the original papers’ results. According to [7], the relative training
throughput of the RTX 4090 GPU and other GPU models (specif-
ically, the RTX 3090 and RTX A6000 GPUs) can be determined
with respect to a 1xLambdaCloud V100 16GB GPU. By divid-
ing the training time data by these values, we have presented our
training time results in a fair and comparable manner in Table ??.

A detailed breakdown of our results across every scene in the
Mip-NeRF 360 [1], Tanks&Temples [6], and Deep Blending [4]
datasets, along with their average values per dataset, is provided in
Table 1 and Table 2. These results pertain to the selected DARB-
Splatting algorithms, namely raised cosine splatting (3DRCS),
half-cosine squared splatting (3DHCS), sinc splatting (3DSS), and
inverse quadratic splatting (3DIQS). Key evaluation metrics, in-
cluding PSNR, SSIM, LPIPS, memory usage, and training time for
both 7k and 30k iterations, are analyzed in detail. These are pre-
sented alongside the results from implementing the updated code-
base of 3DGS on our single NVIDIA GeForce RTX 4090 GPU to
ensure a fair comparison. Our pipeline is anchored on this updated
codebase, which produces improved results compared to those re-
ported in the original 3DGS paper [5]. As shown in the tables,
each DARB-Splatting algorithm demonstrates unique advantages
in different utilities.

1D Simulations. In Figures 5, 6, 7, 8, 9, 10, 11, we
show an extended version of the initial 1D simulation described
in Sec. ?? in our paper. Here, we conduct experiments with var-
ious reconstruction kernels in 1D as a toy experiment to under-
stand their signal reconstruction properties. These kernels include
Gaussians, cosines, squared cosines, raised cosines, squared raised
cosines, and modulus sincs. The reconstruction process is opti-
mized using backpropagation, with different means and variances
applied to each kernel. This approach is used to reconstruct var-
ious complex signal types, including a square pulse, a triangular
pulse, a Gaussian pulse, a half-sinusoid single pulse, a sharp ex-
ponential pulse, a parabolic pulse, and a trapezoidal pulse.

We are grateful to the authors of GES [3] for open-sourcing
their 1D simulation codes, which we have improved upon for this
purpose. Expanding beyond GES, here, we also demonstrate the
reconstruction of non-symmetric 1D signals to better represent
real-world 3D reconstructions and further explore the capabilities
of various DARBFs. As shown in the simulations, Gaussians are
not the only effective interpolators; other DARBFs can provide
improved 1D signal reconstructions in specic cases.

Ground Truth Gaussians Raised cosines (ours)

Figure 1. Qualitative Visualization Across 3DGS and raised cosine splatting. Displayed are side-by-side comparisons across the
Counter, Truck, DrJohnson, Bonsai scenes (top to bottom) repsectively from Mip-NeRF 360, Tanks&Temples and Deep Blending datasets.
In the Counter scene, raised cosines outperform Gaussians by better reconstructing the buttons, rendering them more prominently, whereas
Gaussians struggle to achieve this even after full training. Similarly, in the Truck scene, raised cosines successfully reconstruct the orange
mark on the oor, a detail that Gaussians fail to capture. In the Dr. Johnson scene, our method renders the string of the picture frame with
greater clarity, closely resembling the ground truth imagery, while Gaussians fail to achieve the same level of detail. Lastly, in the Bonsai
scene, the edges of the pot are more accurately represented by raised cosines as we can see its shadows, producing results that are closer to
the ground truth image compared to those achieved with Gaussians. These examples highlight the advantages of raised cosine splatting in
capturing ner details in 3D reconstruction compared to Gaussians.

Train Loss Train Speed

K
itc
he
n

R
oo

m
C
ou

nt
er

F
lo
w
er
s

B
on

sa
i

Figure 3. Training loss and speed curves across different scenes reveal signicant performance differences. Specically, the superior
convergence speed of half-cosine squared splatting stands out compared to other selected DARBFs, particularly the Gaussian function.
Although all the selected functions exhibit similar loss curves, notable variations are observed in their respective training speed curves
across various scenes. These differences can be attributed to the inherent characteristics of each scene, which inuence the training
dynamics of the functions.

Train Loss Train Speed

B
ic
yc
le

G
ar
de
n

Tr
ai
n

Tr
uc
k

Tr
ee
hi
ll

Figure 4. Training loss and speed curves across different scenes reveal signicant performance differences. As an exception, in the Truck
scene, we observe that the speed curves of Gaussians and raised cosines overlap and outperform half-cosine squares. However, when
considering the overall performance across all scenes, half-cosine squares demonstrates superior efciency in training time.

Table 1. Performance metrics across various scenes. Red color denotes best performance, while yellow denotes third-best. Higher values
are better for PSNR, SSIM, and lower values are better for LPIPS, Memory, and Training Time. Here we present a detailed breakdown of
results for all scenes from Mip-NeRF360 [1] dataset for 7k and 30k iterations. The performance of each model is heavily affected by the
nature of the scene. Some values may differ from the main table due to stochastic processes, as these results are from a single instance of
a full evaluation experiment series. In contrast, Table ?? presents the mean results averaged across multiple experiments.

Metric Model Step Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Mean

PSNR (dB)

3DGS 7k 23.759 20.4657 26.21 25.712 22.09 29.439 27.179 29.213 29.863 25.9525
30k 25.248 21.519 27.352 26.562 22.554 31.597 29.055 31.378 32.316 27.4509

3DRCS 7k 23.81 20.52 26.274 25.825 22.09 29.3625 27.261 29.312 29.635 26.0058
30k 25.222 21.492 27.374 26.542 22.456 31.342 29.032 31.431 31.842 27.4547

3DHCS 7k 23.037 19.929 25.351 24.821 22.078 29.127 26.837 28.756 29.481 25.4607
30k 24.369 21.046 26.585 25.937 22.564 31.003 28.782 31.95 31.89 27.0451

3DSS 7k 23.371 20.177 25.685 25.2 22.134 29.373 27.078 28.88 29.805 25.7447
30k 24.813 21.2706 26.985 26.262 22.619 31.467 28.982 31.094 32.213 27.3006

3DIQS 7k 23.309 19.782 25.669 24.893 21.591 28.986 26.71 28.211 28.132 25.2536
30k 24.885 20.838 26.838 26.169 22.389 31.185 28.547 30.34 30.173 26.8182

LPIPS

3DGS 7k 0.328 0.422 0.16 0.294 0.418 0.26 0.2455 0.157 0.236 0.2801
30k 0.211 0.342 0.108 0.217 0.33 0.22 0.202 0.126 0.205 0.2178

3DRCS 7k 0.3197 0.41 0.156 0.283 0.406 0.257 0.241 0.155 0.231 0.2732
30k 0.2079 0.334 0.108 0.212 0.324 0.219 0.2 0.126 0.203 0.2148

3DHCS 7k 0.403 0.458 0.233 0.35 0.46 0.2787 0.256 0.168 0.238 0.3161
30k 0.281 0.368 0.156 0.26 0.375 0.234 0.208 0.132 0.206 0.2466

3DSS 7k 0.374 0.444 0.206 0.328 0.444 0.271 0.25 0.164 0.237 0.302
30k 0.249 0.359 0.135 0.241 0.356 0.229 0.205 0.129 0.206 0.2343

3DIQS 7k 0.355 0.462 0.18 0.335 0.443 0.268 0.253 0.17 0.242 0.3008
30k 0.238 0.281 0.126 0.248 0.358 0.228 0.21 0.134 0.21 0.2258

SSIM

3DGS 7k 0.669 0.523 0.826 0.722 0.586 0.894 0.875 0.903 0.92 0.7686
30k 0.763 0.6 0.863 0.769 0.633 0.917 .903 0.9256 0.939 0.8125

3DRCS 7k 0.6735 0.5302 0.8297 0.7283 0.5913 0.8953 0.8786 0.905 0.9214 0.7726
30k 0.7641 0.6039 0.864 0.7703 0.6325 0.9176 0.906 0.9256 0.94 0.8137

3DHCS 7k 0.602 0.478 0.771 0.668 0.557 0.883 0.866 0.894 0.915 0.7371
30k 0.706 0.566 0.827 0.7337 0.61 0.91 0.898 0.92 0.9355 0.7895

3DSS 7k 0.631 0.498 0.795 0.693 0.571 0.889 0.873 0.899 0.918 0.7508
30k 0.736 0.583 0.845 0.752 0.623 0.914 0.903 0.923 0.938 0.8008

3DIQS 7k 0.637 0.474 0.8 0.678 0.564 0.884 0.862 0.889 0.911 0.7443
30k 0.739 0.555 0.843 0.742 0.615 0.909 0.894 0.914 0.928 0.7932

Memory (MB)

3DGS 7k 753 503 840 844 502 259 229 358 252 504
30k 1135 658 950 1024 727 313 250 384 258 633

3DRCS 7k 789 516 842 879 528 255 238 370 275 521
30k 1120 668 953 1010 749 343 276 412 279 645

3DHCS 7k 570 412 630 699 413 211 228 322 211 410
30k 858 578 739 867 632 256 242 372 245 532

3DSS 7k 592 424 672 706 396 240 223 364 266 431
30k 948 586 800 901 602 281 250 393 272 559

3DIQS 7k 394 263 484 478 245 153 140 223 149 281
30k 608 373 518 611 375 182 151 238 153 356

Training time (s)

3DGS 7k 181 160 212 173 163 225 240 265 217 204
30k 1378 920 1302 1149 1020 1178 1107 1313 949 1146

3DRCS 7k 193 155 218 182 159 194 205 239 192 193
30k 1581 995 1400 1292 1098 1087 1010 1247 876 1176

3DHCS 7k 164 145 199 158 145 217 223 252 210 172
30k 1103 806 1035 996 848 1002 934 1181 870 975

3DSS 7k 182 153 202 169 157 233 243 281 185 201
30k 1324 879 1215 1093 944 1200 1106 1413 1001 1130

3DIQS 7k 161 146 186 152 155 238 263 269 223 199
30k 1004 704 993 842 799 1105 1049 1261 880 960

Table 2. Performance metrics across various scenes. Red color denotes best performance, while yellow denotes third-best. Higher values
are better for PSNR, SSIM, and lower values are better for LPIPS, Memory, and Training Time. Here we present a detailed breakdown of
results for all scenes from Tanks&Temples [6] and Deep Blending [4] datasets for 7k and 30k iterations. The performance of each model
is heavily affected by the nature of the scene. Some values may differ from the main table due to stochastic processes, as these results
are from a single instance of a full evaluation experiment series. In contrast, Table ?? presents the mean results averaged across multiple
experiments.

Metric Model Step Tanks&Temples Deep Blending

Truck Train Mean DrJohnson Playroom Mean

PSNR (dB)

3DGS 7k 23.933 19.795 21.784 27.609 29.354 28.4215
30k 25.481 22.201 23.771 29.493 29.976 29.6645

3DRCS 7k 24.026 19.758 21.882 27.437 29.417 28.477
30k 25.314 22.077 23.6355 29.35 29.981 29.6355

3DHCS 7k 22.851 19.391 21.071 26.844 28.965 27.9345
30k 24.561 21.721 23.108 29.003 29.772 29.3875

3DSS 7k 23.44 19.658 21.589 27.371 29.417 28.394
30k 25.03 21.973 23.5065 29.414 29.955 29.6645

3DIQS 7k 23.3 19.43 21.365 27.279 28.904 28.0915
30k 24.83 21.856 23.343 29.239 29.769 29.504

LPIPS

3DGS 7k 0.197 0.318 0.2515 0.318 0.284 0.301
30k 0.144 0.199 0.1725 0.237 0.243 0.24

3DRCS 7k 0.19 0.312 0.251 0.3178 0.282 0.2999
30k 0.1423 0.196 0.1661 0.238 0.2435 0.2407

3DHCS 7k 0.235 0.354 0.2945 0.341 0.298 0.3195
30k 0.169 0.231 0.2 0.25 0.256 0.253

3DSS 7k 0.218 0.334 0.276 0.325 0.292 0.3085
30k 0.159 0.218 0.1885 0.243 0.25 0.2465

3DIQS 7k 0.213 0.34 0.2765 0.327 0.292 0.3095
30k 0.154 0.221 0.1875 0.24 0.247 0.2435

SSIM

3DGS 7k 0.848 0.719 0.7815 0.87 0.894 0.882
30k 0.88 0.818 0.851 0.903 0.903 0.903

3DRCS 7k 0.8527 0.7242 0.7884 0.8696 0.8942 0.8819
30k 0.8818 0.8197 0.8507 0.9015 0.9013 0.9014

3DHCS 7k 0.813 0.684 0.7485 0.856 0.887 0.8715
30k 0.858 0.791 0.8245 0.899 0.9 0.8995

3DSS 7k 0.831 0.704 0.7675 0.866 0.891 0.8785
30k 0.869 0.803 0.836 0.902 0.902 0.902

3DIQS 7k 0.827 0.693 0.76 0.862 0.886 0.874
30k 0.866 0.795 0.8305 0.902 0.899 0.9005

Memory (MB)

3DGS 7k 406 180 293 462 336 399
30k 485 257 371 742 412 577

3DRCS 7k 476 132 304 491 352 421.5
30k 548 181 364.5 767 446 606.5

3DHCS 7k 344 145 244.5 355 331 343
30k 446 230 338 634 417 482.5

3DSS 7k 355 156 255.5 399 316 357.5
30k 434 232 333 682 400 541

3DIQS 7k 236 114 175 299 197 248
30k 291 156 223.5 489 239 364

Training time (s)

3DGS 7k 132 112 122 212 176 194
30k 738 631 684.5 1385 1039 1212

3DRCS 7k 134 105 119.5 193 162 177.5
30k 793 660 726.5 1378 1023 1200.5

3DHCS 7k 114 103 108.5 213 169 191
30k 604 498 551 1163 947 1055

3DSS 7k 131 118 124.5 219 176 197.5
30k 745 659 702 1407 1087 1247

3DIQS 7k 129 123 126 216 164 190
30k 624 602 613 1262 918 1090

N=1 N=5 N=10

Figure 5. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a square pulse.
Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine, and
Modulated Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 6. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a triangle pulse.
Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine, and
Modulated Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 7. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a Gaussian. Each
row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine, and Modulated
Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 8. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a half-sinusoid
single pulse. Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised
Cosine, and Modulated Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 9. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a sharp exponential
pulse. Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine,
and Modulated Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 10. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a parabolic pulse.
Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine, and
Modulated Sinc. The columns represent the number of primitives used.

N=1 N=5 N=10

Figure 11. Visualization of 1D simulations for different splatting methods with varying primitives (N=1, N=5, N=10) for a trapezoid pulse.
Each row corresponds to a specic splatting method: Gaussian, Cosine, Squared Cosine, Raised Cosine, Squared Raised Cosine, and
Modulated Sinc. The columns represent the number of primitives used.

