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Abstract

Splatting-based 3D reconstruction methods have gained
popularity with the advent of 3D Gaussian Splatting, effi-
ciently synthesizing high-quality novel views. These meth-
ods commonly resort to using exponential family functions,
such as the Gaussian function, as reconstruction kernels
due to their anisotropic nature, ease of projection, and dif-
ferentiability in rasterization. However, the field remains re-
stricted to variations within the exponential family, leaving
generalized reconstruction kernels largely underexplored,
partly due to the lack of easy integrability in 3D to 2D
projections. In this light, we show that a class of decay-
ing anisotropic radial basis functions (DARBFs), which are
non-negative functions of the Mahalanobis distance, sup-
ports splatting by approximating the Gaussian function’s
closed-form integration advantage. With this fresh perspec-
tive, we demonstrate up to 34% faster convergence dur-
ing training and a 15% reduction in memory consumption
across various DARB reconstruction kernels, while main-
taining comparable PSNR, SSIM, and LPIPS results. We
will make the code available.

1. Introduction

Splatting plays a pivotal role in modern 3D reconstruc-
tion, enabling the representation and rendering of 3D
points without relying on explicit surface meshes. The re-
cent 3D Gaussian representation, combined with splatting-
based rendering in the 3D Gaussian Splatting (3DGS) [20]
has gained widespread attention due to its state-of-the-art
(SOTA) visual quality, real-time rendering, and reduction
in training times. Since its inception, 3DGS has seen ex-
panding applications in industry, spanning 3D web viewers,
3D scanning, VR platforms, and more, catering to large user
bases. As demand continues to rise, so does the need to im-
prove efficiency to conserve computational resources.
3DGS represents a 3D scene as a dynamically densified
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Figure 1. This figure compares two different splat functions—
Gaussian and cosine (specifically, half-cosine squared)—
initialized for the same 312 covariance matrix, . Cosine
functions, defined as cos (d%) for d3; < %’ where £(> 0),
have finite support and exhibit effective reconstruction perfor-
mance comparable to Gaussians. Notably, the cosine-based
approach enhances training speed by 34% and reduces memory
usage by 15%, providing a more memory-efficient alternative.

radiance field of 3D Gaussian primitives (ellipsoids) that
act as reconstruction kernels. In theory, these ellipsoids are
integrated along the projection direction onto the 2D im-
age plane, resulting in 2D Gaussians or splats, a function
known as the footprint function or splatting function. This
process exploits an interesting property of Gaussians: 2 x 2



covariance matrix of the 2D Gaussian can be obtained by
skipping the third row and column of the 3 x 3 covariance
matrix of the 3D Gaussian [72]. This bypasses costly in-
tegration and efficiently simplifies the rendering in practi-
cal implementation. The footprint function then models the
spread of each splat’s opacity, eventually contributing to the
final pixel color. This Gaussian-based blending effect—a
smooth, continuous interpolation between splats—inspires
the method’s name, “3D Gaussian Splatting.” Numerous
subsequent papers [7, 8, 25, 63, 69] build upon this princi-
ple, thereby restricting to exponential family functions (e.g.,
Gaussian functions) to spread each sample in image space.

In splatting, the Gaussian kernel is commonly used, with
some variations within the exponential family (e.g., super-
Gaussian [15], half-Gaussian [28], Gaussian-Hermite [68]
kernels). However, classical signal processing and sampling
theory establish that while Gaussians are useful, they are
not the most effective interpolators. Especially when de-
termining the pixel color, as in 3DGS, we argue that the
Gaussian function may not be the only possible interpo-
lator. We see other functions outperforming them in vari-
ous contexts, with a notable example being JPEG compres-
sion [48, 55], which leverages Discrete Cosine Transforms
(DCTs) instead of Gaussians functions for image represen-
tation. Additionally, Saratchandran et al. [43] demonstrate
that the sinc activation surpasses Gaussian activation in im-
plicit neural representations [18, 21, 33, 50], while also sug-
gesting several alternative activation functions. This raises
the question: Should we limit ourselves to Gaussians or
the exponential family alone? This remains an underex-
plored area in the computer vision community, partly be-
cause costly integration processes make it computationally
inefficient to use functions outside of Gaussians.

To address this shortcoming, we generalize these ker-
nels by introducing a broader class of functions, namely,
Decaying Anisotropic Radial Basis Functions (DARBFs)
that are non-negative (e.g., modified raised cosine, half-
cosine, sinc functions and erc.) that include but are not lim-
ited to exponential functions. These non-negative DARBFs
achieve comparable reconstruction quality while signifi-
cantly improving training time, along with modest reduc-
tions in memory usage (e.g., half-cosine squares in Ta-
ble 3 and Fig. 1). These DARBFs support anisotropic be-
havior as they rely on the Mahalanobis distance, and are
differentiable, thereby supporting differentiable rendering
(Sec. 3.1). A key innovation in our approach is a novel
correction factor that preserves the computational effi-
ciency of 3DGS even with alternative kernels by approx-
imating the Gaussian’s closed-form integration shortcut.
This allows for effective splatting, yielding novel views,
along with subtle improvements in visual quality for some
functions (e.g., raised cosines in Fig. 5). To the best of
our knowledge, our method represents one of the first mod-

ern generalizations expanding splatting to non-exponential

functions, and offering high-quality rendering as splatting

techniques scale to repetitive industrial applications, where
computational savings are increasingly critical.
The contributions of our paper are as follows:

* We present a unified approach where the Gaussian func-
tion is merely a special case within the broader class of
DARBFs, which can be splatted.

* We leverage the DARBF family, and demonstrate recon-
struction kernels achieving up to 34% faster convergence,
a 15% reduced memory footprint with on-par PSNR, and
enhanced visual quality with finer details in some kernels.

* We introduce a computationally feasible method to ap-
proximate the Gaussian closed-form integration advan-
tage when implementing alternative kernels, facilitated
by our novel correction factor along with CUDA-based
backpropagation codes.

2. Related Work

Radiance Field Representation.  Light fields [14, 27]
were the foundation of early Novel View Synthesis (NVS)
techniques capturing radiance in static scenes. The success-
ful implementation of Structure-from-Motion (SfM) [49]
enabled NVS to use a collection of images to capture real-
world details that were previously impossible to model
manually using meshes. This led to the development of the
efficient COLMAP pipeline [44], which is now widely uti-
lized in 3D reconstruction to generate initial camera poses
and sparse point clouds (e.g., [16, 20, 33, 70]).

Radiance field methods, notably Neural Radiance Fields
(NeRFs) [33], utilize neural networks to model radiance
as a continuous function in space, thereby enabling NVS.
NeRF techniques generate photorealistic novel views [1—
3, 32, 34, 53] through volumetric rendering, integrating
color and density along rays. Recent advancements in
NeRF improve training [6, 35, 60, 66] and inference times
[13, 29, 30, 39, 40]; introduce depth-supervised NeRFs
[10, 42] and deformable NeRFs [36-38, 71]; and enable
scene editing [31, 45, 51, 62], among other capabilities.
While 3DGS follows a similar image formation model to
NeRFs, it diverges by using point-based rendering over vol-
umetric rendering. This approach, leveraging anisotropic
splatting, has rapidly integrated into diverse applications
within a year’s span, with recent work excelling [11] in
physics-based simulations [23, 52, 58, 59], manipulation
[7, 19, 26, 46, 67], generation [9, 41, 54, 65] and percep-
tion [47, 61, 63], among other areas. Similar to 3DGS, our
approach follows point-based rendering but does not restrict
points to being represented as 3D Gaussians, as Saratchan-
dran et al. [43] demonstrate for NeRFs. Instead, we provide
DARBFs, a class of functions to choose from to represent
all points.

Splatting. Splatting, introduced by Westover [56], en-
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ables point-based rendering of 3D data, such as sparse StTM
points [49] obtained from the COLMAP pipeline [44], with-
out requiring mesh-like connectivity. Each particle’s posi-
tion and shape are represented by a volume [56] that serves
as a reconstruction kernel [72], which is projected onto the
image plane through a “footprint function,” or “splat func-
tion,” to spread, or splat each particle’s intensity and color
across a localized region. Early splatting techniques [57]
commonly used spherical kernels for their radial symme-
try to simplify calculations, although they struggled with
perspective projections. To address this, elliptical kernels
[57, 72], projecting elliptical footprints on the image plane
were used to better approximate elongated features through
anisotropic properties, ultimately enhancing rendering qual-
ity. Westover [57], further experimented with different re-
construction kernels, namely sinc, cone, Gaussian, and
bilinear functions without focusing on a specific class of
functions. EWA Splatting [72] further refined this approach
by selecting a Gaussian reconstruction kernel in 3D, which
projects as an elliptical Gaussian footprint on the image
plane.

This laid the groundwork for 3DGS to select the Gaus-
sian function. Although the Gaussian function has been
extensively used to produce results in the past, other
anisotropic radial basis functions exist that can serve as
splats, but they lack exploration.

Reconstruction Kernel Modifications. Although
3DGS claims SOTA performance, recent work has shown
further improvements by refining the reconstruction kernel.
For instance, GES [15] introduces the generalized exponen-
tial function, or super Gaussian, by incorporating a learn-
able shape parameter for each point. However, GES does
not modify the splatting function directly within the CUDA
rasterizer; instead, it only approximates its effects by adjust-
ing the scaling matrix and loss function in PyTorch, failing
to fully demonstrate its superiority [68]. In contrast, we di-
rectly modify the CUDA rasterizer’s splatting function to
support various DARBFs, achieving superior performance
in specific cases compared to 3DGS.

Concurrent work such as 3D-HGS [28], splits the 3D
Gaussian reconstruction kernel into two halves, but this ap-
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Figure 2. Overview of decaying anisotropic radial basis functions (DARBFs) and their respective 1D curves. These functions decay with
distance and vary in their sensitivity to direction, making them effective for capturing anisotropic features in spatial data.

proach introduces additional parameters into the CUDA ras-
terizer, leading to increased computational costs. Similarly,
2DGH [68] extends the Gaussian function by incorporat-
ing Hermite polynomials into a Gaussian-Hermite recon-
struction kernel. Although this kernel more sharply cap-
tures edges, it incurs a high memory overhead due to the
increased number of parameters per primitive. In contrast,
DARBF Splatting achieves efficient performance by avoid-
ing additional parameters while still enabling flexibility in
kernel choice. Furthermore, previous works are mere vari-
ants of the Gaussian kernel, remaining confined to tradi-
tional Gaussian Splatting methods. Our approach breaks
this constraint, generalizing the reconstruction kernel across
the DARBEF class and opening new avenues for high-quality
reconstruction.

3. Preliminaries

3.1. Radial Basis Functions

Radial basis functions (RBFs) serve as a fundamental class
of mathematical functions where the function value solely
depends on the distance from a center point. However,
isotropic RBFs, which are radially symmetric, often fall
short in capturing the local geometric details, such as sharp
edges, flat regions, or anisotropic features that vary direc-
tionally. This limitation [5] results in isotropic RBFs inac-
curately modeling directionally varying local structures.

To address this issue, Anisotropic Radial Basis Functions
(ARBFs) with a decaying nature, namely Decaying ARBFs
(DARBFs), are used, as we are interested in splatting, where
splats decays spatially. This extends the traditional RBF
framework by allowing each function’s influence to vary
along different axes, achieved by incorporating the Maha-
lanobis distance. For a particular point x € R?, the Maha-
lanobis distance (dj), calculated from the center p € R3
of a 3D RBF, is given by:

dy = [(x= )= x—p)]?, (1)

Nl=

where ¥ denotes the 3 x 3 covariance matrix. This radially
dependent anisotropy naturally supports smooth interpola-
tion and plays a pivotal role in 3D reconstruction.



3.2. Assessing DARBFs in Simulations

We evaluate and compare the performance of our DARB
reconstruction kernels against conventional Gaussian ker-
nels through simulations in lower-dimensional settings. We
generated various synthetic 1D functions across a specified
range, including square, exponential, truncated-sinusoid,
Gaussian, and triangular pulses, as well as some irregular
functions to simulate signal variability. These signals were
reconstructed using Gaussian functions and various RBFs
to evaluate the number of primitives required for accurate
reconstruction and the cost difference between original and
reconstructed signals.

(a) Gaussian (N = 5) (b) Gaussian (N = 10)

(c) Half-Cosine (N = 5)

(d) Half-Cosine (N = 10)

(e) Raised Cosine (N = 5) (f) Raised Cosine (N = 8)

(h) Sinc (N = 10)

(g) Sinc (N =9)

Figure 3. Examples of signal reconstruction through backpropa-
gation using various RBFs. Here the target, reconstructed and in-
dividual components are represented by red, blue and green plots,
respectively. We achieve competitive results in convergence speed
and computational cost. Our raised cosine kernels, for example,
achieve convergence faster with fewer components (N = 8) and
at a lower cost of 0.00004 compared to Gaussian kernels, which
converge slightly slower at N = 10 with a comparable cost of
0.0001 in terms of mean squared error.

This pipeline optimizes the number of primitives needed for
signal approximation across different reconstruction ker-
nels. Our approach focuses on three key parameters: posi-
tion, covariance (for signal spread), and amplitude (for sig-
nal strength). The model configurations comprises a mix-
ture network of Gaussian, half-cosine, raised-cosine, and
modular sinc components, each with a predefined variable
number of components. For an extensive analysis of RBFs
functions, refer our Supplementary Material.

The model was trained for a fixed number of epochs with

respect to a mean squared error loss function, which mini-
mized reconstruction error between the predicted and target
signals. Unlike the original Gaussian Splatting algorithm
[20], which calculates loss in the projected 2D image space
with reconstruction in 3D space, we simplified by calculat-
ing the loss and performing the reconstruction directly in 1D
because, 1D signal projection cannot be represented in OD,
as this would be meaningless. Finally, a parameter sweep
was conducted to identify the optimal configuration with
the lowest recorded loss, indicating the optimal number of
components.
Table 1. Comparison of simulation results with Gaussian com-
ponents vs. other reconstruction kernel components. Note that *
indicates that we achieved better reconstruction with fewer compo-
nents (/N = 8) in terms of mean squared error, using our modified
raised cosine pulses compared to Gaussians.

Function Loss (N = 5) Loss (N = 10)
Gaussian 0.0002 0.0001
Modified half cosine 0.0014 0.0003
Modified raised cosine 0.0002 0.00004*
Modified sinc (modulus) 0.0030 0.0002

The simulation results indicate that, like Gaussian func-
tions, certain RBFs, can perform comparably or even out-
perform Gaussians in specific cases. Notably, raised cosines
achieved lower reconstruction loss than Gaussians while re-
quiring fewer primitives. These preliminary findings sug-
gest promising alternatives to Gaussian functions and moti-
vate further exploration of these RBFs. Building on this in-
sight, we aim to incorporate these alternative functions into
the Gaussian Splatting algorithm, introducing minor adjust-
ments in domain constraints and backpropagation.

4. Method

Next, we will elaborate on the use of DARBFs for 3D re-
construction tasks. We present DARBFs as a plug-and-
play replacement for existing Gaussian kernels, offering im-
provements in aspects such as training time and memory
efficiency. The pipeline for DARB splatting is presented
in Fig. 4. Splatting-based reconstruction methods such as
3DGS [20] obtain the 3D representation of a scene by plac-
ing anisotropic Gaussian kernels at 3D points proposed by
a SfM pipeline such as COLMAP [44]. The 3DGS Gaus-
sian kernel gets transformed onto the camera frame and pro-
jected to the corresponding 2D plane of existing views, re-
sulting in splats. The error between the pixels of these views
and blended (rasterized) splats generates the backpropaga-
tion signal to optimize the parameters of the 3D Gaussians.
The four properties that drive this pipeline are 1. the differ-
entiability of this rasterization, 2. the anisotropic nature of
the 3D kernel function (hence the anisotropic nature of the
splats), 3. easy projectability, and 4. rapid decay. As seen
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in [24], the reconstruction kernel function being a function
of the Mahalanobis distance d; (Eq. 1), yields the first
two properties. A class of functions that display the four
properties is non-negative decaying anisotropic radial basis
functions (DARBFs) that are functions of Mahalanobis dis-
tance [4] das (Eq. 1). In Sec. 4.1 we propose a method to
approximate the projection of DARBFs, thereby satisfying
the third property.

4.1. DARB-Splatting

DARB Representation. Similar to 3DGS, we use the same
parameterization to represent 3D DARBFs, as the Gaussian
function is an instance of the DARBF class. In Table 2,
we show the generic mathematical expressions of these re-
construction kernel functions, and Fig. 2 shows their 1D
plots. Only some members of the class are shown here,
while a broader view is provided in the Supplementary Ma-
terial. Similar to the Gaussian, most of the chosen DARBFs
are strictly decaying, meaning their envelopes decay, which
makes them suitable as energy functions. The envelope of
the sinc function, for instance, decays (square-integrable,
hence an energy function). To optimize performance, we re-
stricted the spread of most functions to a single pulse (cen-
tral lobe), ensuring finite support along the reconstruction
axes. However, we also observed that comparable results
can be achieved with two or more pulses, albeit with a slight
trade-off in visual quality (refer Supplementary Material).

DARB Projection. To project 3D DARBs to DARB-splats,
we use the method proposed by EWA Splatting [64, 72]. To
project 3D mean (x) in world coordinate system onto the
2D image plane, we use the conventional perspective pro-
jection. However, the same projection cannot be used to
project the 3D covariance (X) in world coordinates to the
2D covariance (X}, ,) in image space. Hence, first, the 3D

Table 2. Overview of decaying anisotropic radial basis functions
(DARBFs) in 3D, with essential limits to consider for bounded
function applications in 3D reconstruction. Incorporating these
limits on Mahalanobis distance das (defined in Eq. 1) ensures pre-
cise control over the main lobe of each function and influence, sim-
ilar to the 3D Gaussian, for capturing localized features in complex
3D surfaces. Here, the scaling factor £(> 0) controls the spread
of the covariance while 3 decides the roll-off of the main lobe of
each DARBF.

Function Expression Domain

exp (—% (d}u)ﬁ)
cos (% (dM)ﬁ)
0.5+ 0.5 - cos (% (dM)f*)
|Sin (% (dIVI)B)‘
£ (dar)?
1

Modified Gaussian dy >0

Modified half cosine % (dar)? < 5

Modified raised cosine % (dar)? < nm

Modified sinc (modulus) % (dns )ﬁ < w

Inv. multi-quadratic dy >0

(2 +1]2

covariance (X)) is projected onto camera coordinate frame
which results in a projected 3 x 3 covariance matrix (3').
Given a viewing transformation W, the projected covari-
ance matrix X’ in camera coordinate frame can be obtained

as follows: s — JwswTJT )

where J denotes the Jacobian of the affine approximation
of the projective transformation. Importantly, integrating a
normalized 3D Gaussian along one coordinate axis results
in a normalized 2D Gaussian itself. From that, the EWA
Splatting [72] shows that the 2D covariance matrix (25, 5)
of the 2D Gaussian can be easily obtained by taking the
sub-matrix of the 3D covariance matrix (X'), specifically



by skipping the third row and third column (Eq. 4).

However, this sub-matrix shortcut applies only to Gaus-
sian reconstruction kernels due to their inherent properties.
Our core argument questions whether the integration de-
scribed above is essential for the splatting process. While
the Gaussian’s closed form integration is convenient, we
propose interpreting the 3D covariance as a parameter that
represents the 2D covariances from all viewing directions.
When viewing a 3D Gaussian from a particular direction,
we may think that the opacity would be distributed across
the volume defined by each 3D Gaussian, and that alpha
blending composites these overlapping volumes. In prac-
tice, however, the opacity distribution takes place after pro-
jecting 3D Gaussians to 2D splats. Thus, when a ray ap-
proaches, it only considers the Gaussian value derived from
the 2D covariance of the splat.

As a simple example, consider two 3D Gaussians that
are nearly identical in all properties except for the variance
along the z-axis ((07.)?). When these two Gaussians are
projected into 2D, we expect the 3D Gaussian with a higher
o’ to have greater opacity values. In contrast, 3DGS yields
a similar matrix (X5, ,) for both covariances, while exerting
the same influence on opacity distribution along the splats.
This further strengthens our argument for treating ¥’ as a
parameter to represent 35, .

Generally, for DARBFs, integrating a 3D DARB along
a certain axis does not yield the same DARBF in 2D, nor
does it result in a closed-form solution. Therefore, we estab-
lished the relationship between ¥’ and X, , for DARBFs
through simulations. For clarity, we briefly provide the
derivations for the half-cosine squared splat here, whereas
detailed derivations and corresponding CUDA script modi-
fications for all DARBFs are provided in the Supplementary
Material. The 3D half-cosine squared kernels is as follows:

B L L S T
0, otherwise.

where dp; (Eq. 1) is the Mahalanobis distance. We
then calculate the projected X}, , by summing values along
a certain axis, similar to integrating along the same axis.
Through experimentation with various values, we deter-
mined that the estimated X5, , 2D covariance matrix is also
symmetric, due to the strict decomposition of the 3D covari-
ance matrix to maintain a positive definite matrix, indepen-
dent of the third row and column of ¥’. Additionally, we
obtain X4, by multiplying %’ with a correction factor 1)
(Eq. 4), which we estimate separately for each reconstruc-
tion kernel using Monte Carlo experiments. For half-cosine
squares we esti ateg 1 = 1.36.

a c

Y=1|b d e —>¢<Z Z):zim. (4)
e d f

Similarly, based on such empirical results, we modified
the existing CUDA scripts of 3DGS [20] to implement each

DARBF separately with its respective ¢ value to ensure
comparable results. Additionally, we introduce a scaling
factor £ to match the extent of our function closely with
the Gaussian, allowing a fair comparison of DARBF perfor-
mance. Although Gaussian functions are spatially infinite,
3DGS [20] uses a bounded Gaussian to limit the opacity
distribution in 2D, thereby reducing unnecessary process-
ing time. For projected 2D splats, they calculate the maxi-
mum radius as R = 3 - y/max{A;, A2} , where A\; and Ao
denote the eigenvalues of the 2D covariance matrix %5, .
Using this radius R, we obtain a similar extent for DARBFs
as Gaussians with the help of £. Taking that into considera-
tion, the 2D half-cosine squared splat is defined as follows:

. ((x — 1) (Sha) " (2 - u’)) s

3

where € R? is the position vector, u’ € R? is the
projected mean, and 5,, € R?*? represents the covari-

. . A/ 2m& max(A,A .
ance matrix. Here, Reosine Will be w in-

b

dicating 100% extent, as we consider the entire central
lobe. However, for a 2D Gaussian with an extent of 99.7%
(up to three standard deviations), the radius Rgaussian 1S
given by 3 /max(A;, A2). To match the extent of both

. V. .,
functions, we select £(> 0) such that w =

max (A1, Az), which implies £ = %.

Within this bounded region, we use our footprint func-
tion (Eq. 5) to model the opacity, similar to the approach
in 3DGS. Following this, we apply alpha blending to deter-
mine the composite opacity [20, 64] for each pixel, eventu-

ally contributing to the final color of the 2D rendered image.

4.2. Backpropagation and Error Calculation

To support backpropagation, we must account for the dif-
ferentiability of DARBFs. As usual, the backpropagation
process begins with a loss function that combines the same
losses discussed in the original work [20]: an £; loss and
an SSIM (Structural Similarity Index Measure) loss, which
guide the 3D DARBSs to optimize its parameters.

L= (1-XLy+ Apssim (6)

where A denotes each loss term’s contribution to the final
image loss. After computing the loss, we perform back-
propagation, where we explicitly modify the differentiable
Gaussian rasterizer from 3DGS [20] to support respective
gradient terms for each DARBF. The following example
demonstrates these modifications for the 3D half-cosine
squared function (Eq. 5) with £ = 17r—8 .

NT s/ 1 ,
— . Tr— (E ) r—
dw —2(Zhy ) (2 = p) Sln(( ~) 2§2 ( M))

dz—p') ¢ .



Figure 5. Visual comparison on NVS. We present comparisons between our proposed methods (Raised cosine and half-cosine squares)
and established baseline (3DGS) alongside their respective ground truth images. The displayed scenes are ordered as follows: TRUCK and
TRAIN from Tanks&Temples [22] dataset; COUNTER from Mip-NeRF360 [2] dataset. We highlight subtle improvements in our approach,
such as the appearance of a light bulb in the rendered image of the first row, which is absent in the splitting algorithm. Additionally, the
edges of the train and the shadows of the rack in the images on the second and third rows, respectively, are noticeably sharper, whereas these
details appear blurred in the original splitting algorithm. Note that in addition to improved reconstruction, we also achieve significantly
better training and memory efficiency with these alternative primitives (see Table 3).

dw

d(Shyo) D) ¢ )
®)

5. Experiments

Experimental Settings. We anchor our contributions on
the recently updated codebase of 3DGS [20], adjusting the
CUDA scripts to support a range of DARBFs. For a fair
comparison, we use the same testing scenes as the 3DGS
paper, including both bounded indoor and large outdoor en-
vironment scenes from various datasets [2, 17, 22]. We
utilized the same COLMAP [44] initialization provided by
the official dataset for all tests conducted to ensure fairness.
Furthermore, we retained the original hyperparameters, ad-
justing only the opacity learning rate to 0.02 for improved
results. All experiments and evaluations were conducted,
and further verified on a single NVIDIA GeForce RTX 4090
GPU.

We compare our work with SOTA splatting-based meth-
ods that use exponential family reconstruction kernels, such
as the original 3DGS, updated codebase of 3DGS, and GES
[15] as benchmarks. We also evaluated the DARBFs using
the standard and frequently used PSNR, LPIPS and SSIM
metrics similar to these benchmarks (Table 3).

—(z — ) (x—p)T sin ((””’“')T(Eégﬁ_l(”*“')) 5.1. Results

Table 3 summarizes the comparative analysis across various
datasets alongside our benchmarks. It shows that different
functions perform better quantitatively in various aspects,
such as training time, memory efficiency, and visual qual-
ity. Results show that the modified raised cosine function
with £ = % achieves on-par results in terms of PSNR,
LPIPS and SSIM metrics with the SOTA original and up-
dated codebase of 3DGS [20], further validating our 1D
simulation results discussed in Sec. 3.2. Additionally, it
demonstrates that certain DARBFs, despite not belonging
to the exponential family, are able to compete effectively
with our previous related work benchmark [15].

Half-cosine squares with & = 1—5, achieve approximately

a 15% reduction in training time compared to Gaussians
(updated codebase) on average across all scenes, with a no-
tably modest trade-off in visual quality of less than 0.5 dB
on average. This is because a half-cosine square spans a
larger region compared to a Gaussian. With precomputed
scaling factors for each DARBF, there is no additional com-
putational overhead in the rendering pipeline, resulting in
comparable rendering times to Gaussians. Fig. 5 shows
that raised cosine captures fine details better than Gaussians,
and Table 4 presents a comparative analysis of our method
across various 3D reconstruction methods.



. Mip-NeRF360 Tanks & Temples Deep Blending

Function

SSIMT PSNRT LPIPS| Train Memory SSIMtT PSNR?T LPIPS| Train Memory SSIMT PSNRT LPIPS| Train Memory
3DGS (7k) [20] 0.770  25.60 0279 4m43s* 523MB 0.767  21.20 0.28 5m05s* 270MB 0.875 27.78 0317 3m22s* 368 MB
3DGS (30K) [20] 0815 27.21 0214 30m33s* 734MB 0841 23.14  0.183 19m46s* 411 MB 0.903 29.41 0.243  26m29s* 676 MB
GES [15] 0.794 2691 0.250 23m31s* 377MB 0.836 23.35 0.198 15m26s* 222MB 0.901 29.68 0.252 22m44s™ 399 MB
3DGS-updated (7K) ~ 0.769 2595  0.281 3m24s 504 MB 0.781 21.78  0.261 2m02s 293MB 0.879 2842  0.305 3m 14s 462 MB
3DGS-updated (30K) 0.813 2745 0218 19mO06s 633MB 0.847 2377 0.173 11lm24s 371 MB 0901 29.66 0.242 20m 12s 742 MB
Raised cosine (7K) 0.773  26.01 0.273 3m13s  S513MB 0.788 21.88  0.251 Im59s 304MB 0.882 2847  0.300 2m57s 401 MB
Raised cosine (30K) ~ 0.813 2745 0.214 19m36s 645MB 0.851 23.64 0.166 12m06s 364MB 0.901 29.63 0.240 20mOls 767 MB
Half cosine (7K) 0.737 2546 0316 2m52s 400 MB 0.749 21.071 0.295 Im42s 244MB 0.872 27.938 0.320 2m42s  355MB
Half cosine (30K) 0.790 27.04 0.247 16m15s 524MB 0.824 23.108 0.201 9m 11s 338MB 0.900 2938 0.253 17m35s 634 MB
Modular Sinc (7K) 0.751 2574  0.302 3m20s 439MB 0.767 2159 0.276 2m04s 255MB 0.878 2839  0.308 3m17s 399 MB
Modular Sinc (30K)  0.801 27.30 0.234 18m50s 622MB 0.836  23.51 0.189 16mO08s 333MB 0.901 29.66 0.247 20m47s 682 MB

Table 3. Splatting results: The best values are highlighted in red and second-best values in orange, the third-best values in light orange,
and the fourth-best in yellow. Note that, * denotes the difference in computation power that is used to implement our model and previous
models (3DGS [20], GES [15]), hence we used a speed-up factor (see Supplementary Materials), to get fair results regarding training time
which is available in the original publication. Our DARBFs were implemented based on the updated 3DGS codebase. Our DARB splatting
with raised cosine function was able to achieve on-par performance regarding PSNR, SSIM, LPIPS and training duration. Also, half cosine
square shows a significant reduction in training time. We evaluate the performance of each model by considering the results at 7K and 30K

iteration checkpoints.

Table 4. Comparison of various 3D reconstruction methods, show-
ing that our approach outperforms prior methods in PSNR, LPIPS,
and training efficiency metrics. Note that the benchmark values for
3DGS and GES are sourced directly from their respective papers,
and therefore may not represent an entirely fair comparison.

Method SSIMt PSNR1T LPIPS| Train]
Plenoxels [12] 0.626 23.08 0.463 19m™
INGP [35] 0.699 25.59 0.331 5.5m*
Mip-NeRF360 [2] 0.792 27.69 0.237 48h

3DGS [20] 0.815 27.21 0.214 30m™
GES [15] 0.794 26.91 0.250 23m™
DARBS (RC) 0.813 27.45 0.214 19min
DARBS (HC) 0.790 27.04 0.247 16min

5.2. Ablation Study

Decaying ARBFs. We validated various reconstruction
kernels through low-dimensional simulations (Sec. 3.2),
showing that normalized, decaying functions focus energy
near the origin (Sec. 4.1), ensuring each sample’s influence
on the reconstruction is strongest its point, aiding accurate
signal reconstruction. In contrast, the instability caused by
unbounded growing functions led to their omission in favor
of DARBFs.

Correction factor. The existing pipeline was built upon the
prominent property of Gaussians, where integrating along
a specific axis results in the same function, in a lower
dimension. However, DARBFs generally do not exhibit
this property. To incorporate DARBFs into the original
pipeline, we introduced a correction factor v to approxi-
mate the projected covariance (Sec. 4.1). As shown in Ta-
ble 5, this modification significantly enhanced the perfor-
mance of DARBFs, achieving comparable results across all
scenes in the Mip-NeRF 360 dataset on average for raised

cosines, relative to the updated 3DGS codebase, implying
outperformance of the same in the original 3DGS results.

Table 5. Comparison of PSNR, SSIM, and LPIPS metrics for Mip-
NeRF 360 scenes under the influence of 1. We claim that incorpo-
rating v not only enhances the performance of our kernels but also
serves as the pivotal factor in surpassing the 3DGS results.

with without 1)
Scenes PSNR SSIM LPIPS PSNR SSIM LPIPS
3DGS-updated — — — 27.45 0.81 0.22
Raised Cosine 27.45 0.81 0.21 26.69 0.78 0.25
Half Cosine 27.04 0.79 0.25 25.89 0.76 0.28

6. Conclusion and Discussion

To the best of our knowledge, we are the first to general-
ize splatting techniques with DARB-Splatting, extending
beyond the conventional exponential family. In introduc-
ing this new class of functions, DARBFs, we highlight the
distinct performances of each function. We establish the
relationships between 3D covariance and 2D projected co-
variance through Monte Carlo experiments, providing an ef-
fective approach for understanding covariance transforma-
tions under projection. Our modified CUDA codes for each
DARBEF are available to facilitate further research and ex-
ploration in this area.

Limitation. While we push the boundaries of splatting
functions with DARBFs, the useful properties and capabili-
ties of each function for 3D reconstruction, within a classi-
fied mathematical framework, remain to be fully explored.
Future research could explore utility applications and the
incorporation of existing signal reconstruction algorithms,
such as the Gram-Schmidt process, with DARBFs.
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